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Abstract  9 

This study focuses on implications of differences between recent global emissions inventories for 10 
simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990-2019 11 
period. We use the ECLIPSE version 6 (ECLv6) and Community Emission Data System year 2021 12 
release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the resulting 13 
aerosol evolution to corresponding results derived with the first CEDS release, as well as to observed 14 
trends in regional and global aerosol optical depth (AOD). Using CEDS21 and ECLv6 results in 3% 15 
and 6% lower global mean AOD compared to CEDS in 2014, primarily driven by differences over China 16 
and India, where the area average AOD is up to 30% lower. These differences are considerably larger 17 
than the satellite-derived interannual variability in AOD. A negative linear trend (over 2005-2017) in 18 
global AOD following changes in anthropogenic emissions is found with all three inventories but is 19 
markedly stronger with CEDS21 and ECLv6. Furthermore, we confirm that the model better captures 20 
the sign and strength of the observed AOD trend over China with CEDS21 and ECLv6 compared to 21 
using CEDS. We estimate a net, global mean aerosol-induced RF in 2014 relative to 1990 of 0.08 W m-22 
2 for CEDS21, and 0.12 W m-2 for ECLv6, compared to 0.03 W m-2 with CEDS. Using CEDS21, we also 23 
estimate the RF in 2019 relative to 1990 to be 0.10 W m-2, reflecting the continuing decreasing trend in 24 
aerosol loads post 2014. Our results facilitate more rigorous comparison between existing and 25 
upcoming studies of climate and health effects of aerosols using different emission inventories.  26 

  27 

1 Introduction 28 

Human activities have led to a substantial increase in atmospheric abundances of aerosols relative to 29 
pre-industrial conditions. While increasing emissions of greenhouse gases is the dominant driver of 30 
recent global warming, aerosols play a key role in shaping regional and global climate, and for 31 
anthropogenic climate change, through their interactions with radiation and clouds. The sixth assessment 32 
report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) estimates that changes in 33 
atmospheric aerosols have contributed an effective radiative forcing (ERF) of –1.3 W m-2 over the 34 
industrial era (1750–2014), albeit with a wide uncertainty range of –2.0 to –0.6 W m-2 (Forster et al., 35 
2021).  36 

Over recent decades, anthropogenic emissions of aerosols and their precursor gases has been changing 37 
rapidly, with substantial spatiotemporal heterogeneity and particularly in Asia. Following decades of 38 
rapid economic growth in China, the combustion of coal, other fossil fuels, and biofuels increased 39 
considerably, resulting in the region becoming the dominating source of air pollution emissions. 40 
However, since the implementation of the Action Plan on Air Pollution Prevention and Control, 41 
emissions of sulfur dioxide (SO2) and then nitrogen oxide (NOx) in China have declined rapidly 42 
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(Klimont et al., 2017; Klimont et al., 2013; Tong et al., 2020; Zheng et al., 2018). Recent studies suggest 43 
that also black carbon (BC) emissions are declining (Kanaya et al., 2020; Zheng et al., 2018). In contrast, 44 
a continuing strong growth of SO2 emissions has been seen in South Asia (Kurokawa & Ohara, 2020; 45 
Li et al., 2017). These contrasting trends have given rise to a distinct dipole pattern of increasing and 46 
declining aerosol optical depth over South and East Asia, respectively, visible in satellite data (Samset 47 
et al., 2019).  48 

Such rapid aerosol changes are likely to affect regional climate, however the exact magnitude and role 49 
remains insufficiently quantified. One factor contributing to uncertainty is the substantial differences, 50 
in both magnitudes and trends, that exist between current emission inventories (e.g. Crippa et al., 2018; 51 
Elguindi et al., 2020). A critical issue that has recently been highlighted is a notable underestimation of 52 
the decline in Chinese emissions of SO2 and NOx, and overestimation of carbonaceous aerosol 53 
emissions in Asia and Africa, in the Community Emission Data System (CEDS) developed for the sixth 54 
cycle of the Coupled Model Intercomparison Project (CMIP6) (Szopa et al., 2021). Since the initial parts 55 
of the CMIP6 exercise, the CEDS inventory has undergone several revisions. The most recent version, 56 
CEDS21, covering the period up to 2019, exhibit several key differences compared to the initial release 57 
– for some species all the way back to the early 2000s (O'Rourke et al. (2021)). In particular, both BC 58 
and OC emissions are substantially lower in the update, and issues related to the decreasing trend in 59 
Chinese SO2 are largely addressed.  60 

Given the relative importance of these source regions, such inventory differences may have implications 61 
for simulations of anthropogenic aerosol distributions globally and contribute to increased uncertainty 62 
in estimates of aerosol-induced climate impacts, both in the IPCC AR6 and elsewhere in the literature. 63 
For instance, recent work has shown that results from the CMIP6 experiments fail to fully capture the 64 
observed recent trends in aerosol optical depth (AOD) in Asia (Cherian & Quaas, 2020; Ramachandran 65 
et al., 2022; Su et al., 2021; Wang et al., 2021), with the discrepancy largely attributed to the 66 
misrepresentation of emissions in the region in last decade of the historical CMIP6 period. Other studies 67 
demonstrate that the poor representation of observed aerosol trends can propagate to further 68 
uncertainties in attribution of aerosol-induced impacts, such as the East Asian monsoon (Wang et al., 69 
2022) and health impacts (Cheng et al., 2021). In addition to CMIP6, the CEDS emissions have also 70 
been used in individual model studies of historical aerosol evolution, radiative forcing, sector attribution, 71 
and air quality assessments (e.g. Bauer et al., 2020; Chowdhury et al., 2022; Lund et al., 2018; Lund et 72 
al., 2020; Paulot et al., 2018). Moreover, uncertainties and biases in the baseline historical inventory 73 
may influence scenario-based assessments of near-term future regional climate risk.  74 

As the update to CEDS came too late for uptake in IPCC AR6, it is pertinent to investigate the influence 75 
of the emission differences on the modeled evolution of atmospheric aerosol trends and subsequent 76 
climate implications. Here we undertake one such investigation. Using the chemical transport model 77 
OsloCTM3, we perform simulations with the CEDS21 emission inventory and compare to previously 78 
published results derived with the original CEDS release (Lund et al., 2018; Lund et al., 2019). We also 79 
perform simulations with a third recent global inventory, the ECLIPSE version 6b, where emissions are 80 
similar in evolution but generally even lower than in CEDS21, especially in the most recent period. We 81 
quantify the differences between inventories in simulated evolution of global and regional 82 
anthropogenic aerosol loads over the 1990-2014 period and in the resulting radiative forcing. We also 83 
explore the post-2014 aerosol evolutions with CEDS21 and compare trends in simulated aerosol optical 84 
depth to remote sensing observations.  85 

 86 

2 Methods 87 

Atmospheric concentrations of aerosols are simulated with the global chemical transport model 88 
OsloCTM3 (Lund et al., 2018; Søvde et al., 2012). The model is driven by meteorological data from the 89 
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European Center for Medium Range Weather Forecast (ECMWF) OpenIFS model updated every 3 90 
hours and is run in a 2.25°x2.25° horizontal resolution, with 60 vertical levels (the uppermost centered 91 
at 0.1 hPa). OsloCTM3 treats tropospheric and stratospheric chemistry, as well as modules for 92 
carbonaceous, secondary organic, sulfate, ammonium-nitrate, sea salt and dust aerosols. Aerosols are 93 
scavenged by convective and large-scale rain (ice and liquid phase), with rainfall calculated from 94 
ECMWF data for convective activity, cloud fraction, and rainfall. Dry deposition applies prescribed 95 
deposition velocities for different land cover types. For further details we refer to Lund et al. (2018) and 96 
Søvde et al. (2012). 97 

The aerosol optical depth (AOD) and instantaneous top-of-atmosphere radiative forcing due to aerosol-98 
radiation interactions (RFari) is calculated offline using a multi-stream model with the discrete ordinate 99 
method DISORT (Myhre et al., 2013; Stamnes et al., 1988). The same radiative transfer model is also 100 
used to estimate the radiative forcing of aerosol-cloud interactions (RFaci) (earlier denoted the cloud 101 
albedo effect or Twomey effect). To account for the change in cloud droplet concentration resulting 102 
from anthropogenic aerosols, which alter the cloud effective radius and thus the optical properties of the 103 
clouds, the approach from Quaas et al. (2006) is used.  104 

Modeled AOD is compared with retrievals from the MODIS instrument on the Aqua satellite, which is 105 
available for the period 2003-2020 (MOD08, 2018). We use the combined Dark Target and Deep Blue 106 
AOD at 550nm, release MOD08_M3_V6.1, downloaded from the NASA Giovanni interface. MODIS-107 
Terra AOD is also available for the same period and, for most years, is around 10% lower than MODIS-108 
Aqua on global average. However, based on previous evaluation of the MODIS AOD and a reported 109 
drift in the Terra data (Levy et al., 2010; Sherman et al., 2017), we chose to use MODIS-Aqua for the 110 
model comparison in the current study. We also compare modeled AOD with ground-based 111 
measurements from the AERONET (AErosol RObotic NETwork) (Holben et al., 1998) Version 3 Level 112 
2.0 retrievals at 500 nm. The comparison uses all available data from all months and stations for a given 113 
year, with modeled AOD linearly interpolated to the latitude and longitude of each station. Temporal 114 
trends in simulated and observed AOD are estimated on global-mean and grid point basis by linear least 115 
square fitting and defined as statistically significant (from no trend) when the linear Pearsons correlation 116 
coefficient is significant at the 0.05 level. Interannual variability is estimated on a grid point basis as the 117 
standard deviation of the residual when subtracting a 10-year boxcar average (with mirrored data around 118 
the end points). 119 
 120 
Two sets of time slice simulations are performed using anthropogenic emissions from the CEDS version 121 
2021 (O'Rourke et al., 2021) (hereafter “CEDS21”) and ECLIPSEv6b baseline (hereafter “ECLv6”) 122 
inventories. The ECLv6 emissions are developed with the Greenhouse Gas - Air Pollution Interactions 123 
and Synergies (GAINS) model (Amann et al., 2011). Version 6b (IIASA, 2022) consists of gridded 124 
aerosol and reactive gas emissions in 5-year intervals over the period 1990-2015, as well as emissions 125 
for 2008, 2009, 2014 and 2016. The Community Emission Data System (CEDS) inventory provides a 126 
gridded inventory of anthropogenic greenhouse gas, reactive gases and aerosols since 1750 (Hoesly et 127 
al., 2018). In the first release, the most recent year was 2014, while the 2021 release covers the period 128 
until 2019. Simulations with OsloCTM3 are performed for 1990, 1995, 2000, 2005, 2010, 2014 and 129 
2016 emissions, as well as years 2018 and 2019 for CEDS21. Results from the current study are 130 
compared with previously published results from simulations performed with the first release of the 131 
CEDS emissions (hereafter “CEDS”) and three of the SSP scenarios (Lund et al., 2018; Lund et al., 132 
2019). Keeping in line with the experimental design in Lund et al. (2018), we use year 2010 133 
meteorological data and each simulation is run for one year, with 6 months spin-up. In all simulations, 134 
biomass burning emissions from van Marle et al. (2017) are used for the 1990-2014 period, with Global 135 
Fire Emissions Database version 4 (GFED4, Randerson et al. (2017)) thereafter. We note that van Marle 136 
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et al. (2017) emissions are also based on GFED. Other natural emissions are fixed at the year 2010 137 
levels.  138 
 139 
Additionally, we use output from a timeseries of OsloCTM3 simulations with CEDS emissions and 140 
actual, running meteorology covering the period 1990-2017 (the last three years uses Shared 141 
Socioeconomic Pathways (SSP) 2-4.5 emissions (Fricko et al., 2017) linearly interpolated between 2015 142 
and 2020) (hereafter “CEDSmet”). Originally performed for the phase III of the Aerocom project (e.g. 143 
Gliß et al., 2021), this time series allows an assessment of the role of meteorology in the simulated 144 
aerosol trends. Finally, we produce an updated version of this timeseries using the 2021 release of the 145 
CEDS emissions for the 2001-2017 period (i.e. when the differences are most pronounced) (hereafter 146 
“CEDS21met”). A summary of the experiments is provided in Table S1.  147 
 148 
Figure 1 shows global, total emissions of SO2, BC, OC and NOx over the 1990-2019 period in the three 149 
inventories used here. The differences are particularly pronounced after 2005. Both ECLv6 and CEDS21 150 
show substantially lower emissions of all species during this period, relative to CEDS. The largest 151 
differences are for BC and OC, where CEDS21 is 20-30% lower than CEDS in 2014. For SO2 and NOx, 152 
the corresponding number is approx. 10%.  ECLv6 is generally lower than both CEDS inventories, 153 
particularly for SO2, where ECLv6 is 30% lower than CEDS. While not used in this study, we also note 154 
that similar differences have also been found between CEDS and two other recent global inventories, 155 
the Emissions Database for Global Atmospheric Research (EDGAR) version 5 (Crippa et al., 2020) and 156 
Hemispheric Transport of Air Pollution (HTAP) version 3 (Crippa et al., 2022). Important geographical 157 
distinctions underlie these global differences, as demonstrated for SO2 emissions in 2014 in Fig. 1, where 158 
lower emissions in ECLv6 and CEDS21 are primarily found in China, India, and the Arabian Peninsula. 159 
For many regions and species, differences exist also prior to 2014 (Fig. S1). For instance, CEDS21 has 160 
the highest BC emissions in China of the three inventories until year 2000, while ECLv6 BC emissions 161 
are higher than CEDS21 in both India and Africa South of the Sahara. In India, CEDS and CEDS21 162 
show increasing SO2 emissions while in ECLv6 these appear to be leveling off during 2014-2016. Aside 163 
from East and South Asia, the overall temporal evolution is generally similar in the main source regions 164 
across inventories, although magnitudes differ.   165 
 166 
 167 
 168 
3 Results and discussion 169 

Here we first document the differences and trends in aerosol distributions simulated with the three 170 
different emission inventories, discussing burdens of individual species before focusing on total AOD. 171 
We then present updated estimates of radiative forcing relative to 1990. Finally, we compare the 172 
simulated global and regional AOD with observations over the period.  173 

 174 

3.1 Aerosol burdens  175 

The differences between inventories are substantial enough to influence simulated aerosol burdens 176 
(column integrated aerosol mass, in mg m-2) at the global mean level. For 2014, we estimate 4% and 6% 177 
lower global mean burdens of BC with CEDS21 and ECLv6 (increasing to 6% and 11% when 178 
considering only fossil fuel and biofuel emissions), respectively, compared to CEDS (see Table S2 for 179 
absolute numbers). For primary organic aerosol (POA), the corresponding numbers are 11% and 14% 180 
(30% and 40%), while global mean total sulfate burden is 8% and 15% lower. Smaller reductions are 181 
also seen in the global mean secondary organic aerosol (SOA) burden. Biogenic volatile organic 182 
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compound (VOC) emissions, the main source of SOA, are the same in all simulations. However, the 183 
SOA abundance is affected by differences in anthropogenic VOCs and by changes in primary organic 184 
aerosols, which serve as substrates for SOA formation.  185 

Regionally, even larger difference between the two new inventories and CEDS arise, as shown in Fig. 186 
2 (see Fig. S2 for corresponding percentage changes). For all main anthropogenic aerosol species, the 187 
absolute differences are consistently largest over East Asia, followed by South Asia, and larger for 188 
ECLv6 than for CEDS21. Averaged over these regions, we find reductions in the year 2014 burdens of 189 
BC, POA and sulfate of up to 0.45, 3.5, and 1.9 mg m-2, respectively, when switching from CEDS to 190 
ECLv6 (Fig. 2). This constitutes changes of around 30-40% (Fig. S2). For BC and sulfate, burdens are 191 
also notably lower over North Africa and the Middle East with ECLv6 compared to both CEDS and 192 
CEDS21.  193 

The only species that is more abundant globally with the two new inventories, is nitrate. However, there 194 
are important regional differences, where the burden is lower compared to CEDS in South Asia and on 195 
the US east coast but higher in the US Midwest, parts of Africa and South America, and, especially, 196 
over East Asia (Fig.2, Fig.S2). The net effect is a 15 and 24% higher global mean nitrate burden with 197 
CEDS21 and ECLv6, respectively, relative to CEDS. Changes in the atmospheric nitrate distribution 198 
results from a complex interplay between differences in emissions of NOx, ammonia, and SO2. For 199 
instance, in China (and elsewhere), the lower emissions of SO2 in both ECLv6 and CEDS21 reduces the 200 
chemical competition for available sulfate and, in turn, increases the production of nitrate aerosol. The 201 
potential for an increasing relative role of nitrate in a world with concurrent declines in SO2 emissions 202 
has also been discussed in previous studies (e.g. Bauer et al., 2007; Bellouin et al., 2011).  203 

Both globally and regionally, the spread in estimated aerosol load in 2014 between simulations with 204 
different inventories is on the same order of magnitude or larger than the change over the 5-year period 205 
from 2014 to 2019 in CEDS21. We note that regional burdens can be influenced by long-range transport 206 
and thus affected by remote emission inventory differences. We also note that we find differences in 207 
surface concentrations between simulations that broadly track the results for burden. While beyond the 208 
scope of the present study, this may have implications for assessments of air pollution related health 209 
impacts.   210 

 211 
 212 

3.2 Aerosol optical depth  213 

The differences between inventories are also directly reflected in the simulated total AOD. Over the 214 
whole period considered, global mean AOD is highest in simulations with the first release of the CEDS 215 
emissions, followed by CEDS21 and then ECLv6, with increasing divergence over time, especially after 216 
2005 (Fig. 3a). Averaged globally, we estimate 3% and 6% lower AOD with CEDS21 and ECLv6, 217 
respectively, compared to CEDS in 2014. Regional differences are larger and, as expected, most 218 
pronounced over China and India (Fig. 3b). Averaged over each of these regions (indicated by the boxes 219 
in Fig.3b), we estimate 20% and 30% lower AOD using the two new emission inventories, respectively, 220 
in 2014. For context, we also show the interannual variability in AOD from MODIS-Aqua (see Sect. 2): 221 
For most of these regions the differences between inventories are markedly larger.  222 

Also plotted in Fig. 3a is the linear trend from 2005 to 2017 for each of the global timeseries. We 223 
estimate that anthropogenic emission changes in the CEDS21 and ECLv6 inventories have resulted in a 224 
significant (at the 0.05 level - see Sect. 2) negative linear trend in global mean AOD of -0.005 and -225 
0.006 per decade, respectively. This trend strengthens when extended to 2019 in CEDS21. A negative 226 
global trend is also found when using the first CEDS release, however, it is smaller and not significant 227 
over the period 2005-2014. Extending the timeseries to 2017 by assuming that emissions follow SSP2-228 
4.5 after 2014 (dashed orange line), the negative trends strengthens and switches to significant as per 229 
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our definition, but it remains smaller than for the other two inventories (at -0.003 per decade). We note 230 
that despite the negative long-term trend and continued decrease in anthropogenic emissions, CEDS21 231 
AOD is up in 2019 compared to 2018. We attribute this primarily to the high 2019 biomass burning 232 
emissions in GFEDv4, more than 25% higher than in 2018.   233 

Regionally, all three emission inventories result in a significant decline in AOD over the Eastern US, 234 
Europe, and parts of Russia and Eurasia over the 2005-2017 period in our simulations (Fig. 3c). There 235 
is also a marked negative trend over South America, as well as a weaker decline over Equatorial Africa. 236 
In contrast, increases in simulated AOD are seen over Eastern Siberia. A positive, but weaker and not 237 
significant at the 0.05 level, trend is also seen over Canada. This is presumably due to higher biomass 238 
burning activity, which is supported by a significant increasing trend in annual biomass burning carbon 239 
emissions in GFEDv4 in the boreal North America and eastern Eurasia regions over the same period 240 
(not shown). There is also a decline in GFEDv4 carbon emissions in South America and Africa south of 241 
the Sahara, suggesting that biomass burning is also a key driver of the simulated AOD trends there. 242 
While the three inventories largely agree in all of above regions, the key differences arise, as expected, 243 
when looking at Asia. Both CEDS21 and ECLv6 show a significant decreasing trend over China. A 244 
decline is also present in the simulations with CEDS – when extending the time series to 2017 using 245 
SSP245 emissions – but is much weaker and not significant. Real world emissions have hence likely 246 
tracked well below the SSP245 projections in the region. While all three inventories show a significant 247 
positive trend in AOD over India, this is strongest in CEDS. Regional trends and differences will be 248 
further discussed in Sect. 3.4, including a comparison with observations.  249 

 250 

3.3 Radiative forcing of anthropogenic aerosol since 1990 251 

Figure 4a shows the RFari, RFaci, and net aerosol radiative forcing (RFnet, RFari plus RFaci) relative 252 
to 1990 for the three sets of experiments. The net RF of changes in anthropogenic (and biomass burning) 253 
aerosol is positive since 1990, except for 1995 and 2005, where a small negative forcing is estimated. 254 
As shown in Fig. 1, all inventories show an increase in anthropogenic SO2 emissions in 2005 compared 255 
to the years before, and both these years have relatively high biomass burning emissions in these years. 256 
This positive global mean RF is determined by the balance between a positive forcing over the northern 257 
extratropics, predominantly due to aerosol-radiation interactions, and a negative forcing over Asia and 258 
parts of South America and Africa (Fig. S3).  259 

In 2014, we estimate a global mean RFnet of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 260 
W m-2 for ECLv6 relative to 1990, of which the RFari constitutes 0.07 W m-2, 0.09 W m-2 and 0.10 W 261 
m-2. Our CEDS RFari estimate is similar to the multi-model mean RFari of 0.05 W m-2 derived for the 262 
1990-2015 period using ECLIPSE version 5 emissions by Myhre et al. (2017). The same study estimated 263 
a model mean RFnet of 0.1 W m-2, but with a significant intermodel spread, from close to zero to more 264 
than 0.2 W m-2. This spread is larger than the difference between estimates with different inventories in 265 
the present analysis. Nevertheless, the differences in emissions between CEDS and CEDS21 (ECLv6) 266 
translates to a factor 3 (5) stronger RFnet in our calculations. These differences arise primarily from the 267 
weaker forcing over East Asia and, for ECLv6, also over South Asia and South and Central America, 268 
compared to CEDS (Figure 4b). In contrast, all three inventories give similar RF over the 1990-2014 269 
period in North America, Europe, and Eurasia and show the effect of the southeastward shift in 270 
emissions over the past decades. A negative forcing is seen over China during this period with all three 271 
inventories; however, this is markedly weaker in CEDS21 and ECLv6 (Fig. S3).     272 

Figure 4c shows the RFnet in 2019 relative to 2014, i.e. the five most recent years provided by CEDS21. 273 
In contrast to the 1990-2014 period (Fig. S3), a net positive forcing is estimated over China, in line with 274 
the decline in SO2 emissions. Over India, the forcing has remained negative, although weaker than 275 
during the preceding period. Over Europe and western Russia, the bulk of the emission decline, and 276 
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hence forcing, was already realized until 2014, with only relatively weaker RF seen until 2019. On 277 
global average, RFnet is estimated to be 0.10 W m-2 in 2019 relative to 1990 for CEDS21 emissions 278 
(small reduction from 0.13 W m-2 in 2018 likely due to stronger biomass burning emissions in 2019) 279 
(Fig. 4a).  280 

In the first CEDS release, the most recent historical year was 2014. Using a selection of the SSP 281 
scenarios, Lund et al. (2019) quantified the projected aerosol-induced RF. The orange hatched bars in 282 
Fig. 4 show the range in RFnet in 2020 and 2030 (relative to 1990) estimated with SSP1-1.9, SSP2-4.5 283 
and SSP3-7.0 in that study. The RFnet in 2019 estimated with CEDS21 is close to the lower end of the 284 
bar, i.e. the RFnet projected under SSP3-7.0. However, prior to this higher biomass burning year, there 285 
are indications that the RFnet from simulations with CEDS21 tracked closer to SSP2-4.5 or an even 286 
lower emission pathway.  287 

The dipole pattern of aerosol changes and resulting RF over India versus China was first highlighted by 288 
Samset et al. (2019). Using emissions from CEDS and SSP1-1.9, SSP2-4.5 and SSP3-7.0, combined 289 
with a radiative kernel approach, that study estimated a range of 2014-2030 aerosol (SO2 and BC) RF 290 
of -1.0 W m-2 (SSP1-1.9) to 0.82 W m-2 (SSP2-4.5) over India, and 0.06 W m-2 (SSP2-4.5) to 1.10 W 291 
m-2 (SSP3-7.0) over China. Part of this range can be attributed to poor knowledge of current, and hence 292 
also future, regional emissions (Samset et al. 2019). In the present study, we estimate regionally 293 
averaged RFnet in 2019 relative to 2014 of -0.09 W m-2 and 0.22 W m-2 over India and China, 294 
respectively. For China, this recent RFnet is about 20% of the previously estimated difference between 295 
high and low future aerosol emission scenarios in 2030 (SSP2-4.5 and SSP3-7.0). Uncertainties in the 296 
amount of recent emission reductions can therefore markedly affect assessments of projected near-tern 297 
aerosol-induced climate impacts, as they depend on a well constrained starting point. 298 

 299 

3.4 Comparison with observed aerosol trends  300 

We have demonstrated that the differences between recent global inventories translates to notable 301 
differences in global and regional anthropogenic aerosol distributions, trends, and radiative forcing. To 302 
assess whether the model captures observed trends better with the CEDS21 emissions, we compare 303 
simulated AOD to MODIS-Aqua retrievals and ground-based AERONET measurement. For this 304 
evaluation, simulations where the model is driven by meteorology for the respective years, referred to 305 
as CEDSmet and CEDS21met, are used (see Sect. 2). Figure 5a shows the annual, global mean simulated 306 
AOD from 1990 to 2017 and the MODIS-Aqua AOD from 2003 to 2019. Dashed lines show the linear 307 
2005-2017 trends. Figures 5b-d show the spatially explicit trends.  308 

The simulated global mean AOD is lower than the MODIS-Aqua, by around 20%. However, the overall 309 
geographical pattern of the observed AOD is captured by the model (Fig. S4).  Furthermore, the AOD 310 
simulated by the OsloCTM3 is within, although in the lower range, of the spread in AOD between the 311 
CMIP and AeroCom models (Vogel et al., 2022). As also shown by Vogel et al. (2022), there can be a 312 
notable spread also in AOD derived from different satellite products, where MODIS retrievals comes 313 
out in the upper end. The OsloCTM3 AOD is within the standard deviation range of satellite derived 314 
AOD found in that study. Overall, this suggests a reasonable OsloCTM3 performance in terms of 315 
magnitude and distribution.   316 

In terms of temporal evolution, we estimate weakly negative linear trends in simulated global mean 317 
AOD from 2005 to 2017 with both CEDS and CEDS21, albeit not significant at the 0.05 level. Using 318 
the original release of the CEDS emissions with the SSP2-4.5 extension (i.e. CEDSmet), we calculate a 319 
trend in global mean AOD of -0.001 per decade. With CEDS21 emissions, this strengthens to -0.003 320 
per decade. These are weaker than the trends associated with anthropogenic emission changes derived 321 
from the fixed meteorology simulations in Sect. 3.1 (-0.003 and -0.005 per decade with CEDS and 322 
CEDS21, respectively) and not significant, demonstrating the influence of variability in meteorology 323 
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and natural aerosols. Consistent evidence of a declining influence of anthropogenic aerosols on climate 324 
has also been found for a range of observed variables (Quaas et al., 2022).   325 

In contrast, MODIS-Aqua suggests a positive linear trend of 0.001 per decade in global mean AOD over 326 
the 2005-2017 period, further strengthening to 0.004 per decade when considering the full time series 327 
of available observations (2003-2019). A positive global AOD trend was also found in ground based 328 
observations by Mortier et al. (2020). This positive observed trend is driven by an increase in AOD over 329 
oceans, associated with sea salt aerosol, as well as over boreal regions in the northern high latitudes, 330 
associated with biomass burning aerosol (Fig. 5b). We do not, however, find this trend to be significant 331 
at the 0.05 level. This could in part be due to influence from the substantial year-to-year variability seen 332 
after 2010, which was also pointed out by Vogel et al. (2022). While we are primarily focused on the 333 
anthropogenically-influenced regions in the present analysis, we note that the model does not fully 334 
capture the trends over high-latitude boreal biomass burning regions, nor over the Southern hemisphere 335 
oceanic regions (Fig. 5c-d). While studies to date show a wide spread in simulated response of sea spray 336 
aerosol to changing climate, recent studies have suggested increases both at the global (Struthers et al., 337 
2013) and, even more strongly, at the regional scale (Korhonen et al., 2010). Moreover, other factors 338 
than wind speed are proposed to be possible drivers of a climate feedback on sea salt aerosol (e.g. Paulot 339 
et al., 2020, and references therein). Better understanding of changing natural aerosols in the OsloCTM3 340 
and reasons for the discrepancies compared to observations require further, dedicated studies. 341 

Regionally, there are significant observed declines in AOD over East Asia, eastern US, and parts of 342 
Europe (Fig. 5b). A negative trend is also seen over South America; however, this is not significantly 343 
different from zero over this period. A significant positive trend is seen over India. The trends over 344 
North America, Europe, and Asia are consistent with the concurrent changes in anthropogenic emissions 345 
and have been seen in both ground based and remote observations of both AOD and other variables (Gui 346 
et al., 2021; Moseid et al., 2020; Paulot et al., 2018; Quaas et al., 2022). The trends in AOD simulated 347 
with the OsloCTM3 show the same sign as MODIS-Aqua in most regions, for both emission inventories 348 
(Fig. 5c-d). As expected from results in preceding sections, the main differences, between CEDSmet 349 
and MODIS-Aqua, as well as between model results, arise over Asia. We therefore take a closer look at 350 
the evolution of AOD in this region (Fig. 6). Both MODIS-Aqua and the OsloCTM3 show an increase 351 
in AOD over India from 2008, although modeled changes are weaker in magnitude. As indicated by 352 
preceding sections, using CEDS21 results in marked improvements compared to observed AOD trends 353 
over China, both for the first and last full 5-year periods. A continuation of the dipole pattern of increases 354 
and decreases over India and China is evident from the observations for the 2018-2020 period (noting 355 
that the COVID-19 pandemic resulted in significant temporary impacts on emissions in 2020). In the 356 
case of India, this increase suggests that the leveling off in anthropogenic emissions in the inventories 357 
(Fig. S1) may not be representative of the observed evolution. However, we note that natural emissions, 358 
as well as long-range transport, may factor into the observed trend as well, complicating the comparison. 359 
We also note that the 5-year deviations exhibit quite some variability over the Middle East, with both 360 
positive and negative deviations from the baseline period. While anthropogenic emissions in this region 361 
increase steadily over the period (by 13-40% depending on species) in the inventories used in the present 362 
study, the strong influence from dust emissions in this region likely contributes to the temporal 363 
variability.   364 

A previous OsloCTM3 study by Lund et al. (2018) found an improved agreement between year 2010 365 
ground-based observations and model output, including over Asia, when switching from CMIP5 and 366 
ECLIPSEv5 emissions to CEDS, the latter having higher emissions. This seemingly contradicts 367 
expectations following the now-known biases in this first release of CEDS. Here we repeat the 368 
comparison with AERONET measurements, but for year 2014. Resulting scatter density plots are given 369 
in the SI.  370 

On global average, the model underestimates observed AOD, consistent with the comparison against 371 
MODIS-Aqua and Lund et al. (2018). The normalized mean bias (NMB) ranges from 22 to 29% in the 372 
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simulations with fixed meteorology (Fig. S5). This underestimation is somewhat larger than what was 373 
found by Lund et al. (2018), but since the year, number of measurements and stations are different, a 374 
direct comparison is difficult. These simulations use 2010 meteorology, however, the difference in 375 
meteorology appears to only explain a small part of the bias, as can be seen by comparing scatter density 376 
plots for CEDS and CEDSmet and CEDS21 and CEDS21met. Interannual variability may also play a 377 
role. We consistently find higher NMB and lower correlation when switching from the original CEDS 378 
release to CEDS21 and ECLv6. The largest normalized mean bias (NMB) of -29% is found in the 379 
simulation using ECLv6 emissions, the lowest of the three inventories, while the smallest NMB is 380 
calculated for CEDS (-22%) (Fig. S5). Hence, while the model is better able to represent observed recent 381 
aerosol trends over East Asia with newer emission inventories, results point to other issues. Specifically, 382 
our analysis indicates that the too high emissions in CEDS may have partly concealed underestimations 383 
of other aerosol sources in the model. One possible candidate is dust aerosol from soils in agricultural 384 
regions and human activities in urban areas (e.g. construction, non-exhaust transport emissions), which 385 
are suggested to give an important contribution to the particulate matter load (e.g. Chen et al., 2019; Xia 386 
et al., 2022), but is stilling missing from many global models, including the OsloCTM3. 387 

 388 

4 Conclusions 389 

We have investigated the impact of differences between recent global emission inventories on simulated 390 
anthropogenic aerosol abundances, and associated radiative forcing, from 1990 to 2019. Simulations 391 
with the chemical transport model OsloCTM3 and the CEDS emission inventory, developed for the 392 
sixth cycle of the IPCC, are compared with corresponding results using two newer inventories: The 393 
CEDS 2021 update (CEDS21) and the ECLIPSE version 6b (ECLv6). Our main objective was to explore 394 
the implications of now known biases in CEDS, specifically the underestimation of the decline in 395 
Chinese precursor emissions and an overestimation of Asian and African BC and OC emissions. While 396 
largely addressed in the updated release, these biases introduce added uncertainty in recently published 397 
estimates of the anthropogenic aerosol evolution and effects.  398 

We have found that, apart for nitrate, the CEDS21 (ECLv6) result in lower global aerosol burdens than 399 
CEDS, ranging from 4% (6%) for BC to approx. 10% (15%) for sulfate and POA in 2014 (the most 400 
recent historical year common for all scenarios). Differences are consistently most pronounced over 401 
East Asia, followed by South Asia, where they are on the order of 30-60% depending on species and 402 
scenario. We also note marked differences between CEDS and ECLv6 over North Africa and the Middle 403 
East. In our model, the global mean fine mode nitrate burden is 15% (24%) higher with CEDS21 404 
(ECLv6) relative to CEDS, but with regional heterogeneity in sign of the difference. Overall, we 405 
estimate 3% (6%) lower total AOD with CEDS21 (ECLv6), respectively, compared to CEDS in 2014. 406 
The difference reaches approx. 20% and 30% over East and South Asia.  407 

Changes in anthropogenic emissions result in a negative linear trend in global mean AOD over the 2005-408 
2017 period with all three inventories, but increasingly stronger with CEDS21 (ECLv6). Importantly, 409 
we find that the model is better able to capture the declining AOD trend observed by MODIS-Aqua over 410 
China with both new inventories, whereas it is weak and not significant with CEDS. A positive AOD 411 
trend is found over India; however, it is weaker in the model than in MODIS-Aqua data.  412 

Using offline radiative transfer calculations, we estimate a global mean net aerosol RF in 2014 relative 413 
to 1990 of 0.03 W m-2 for CEDS, 0.08 W m-2 for CEDS21, and 0.12 W m-2 for ECLv6. Following the 414 
continued declined in CEDS21 emissions, a positive global-mean net RF is also estimated for the 5-year 415 
period 2014-2019, with the strongest positive signals over China and easter US.  416 

While the focus of the present study is on anthropogenic aerosols, our comparison with observed AOD 417 
reveals potential issues related to the representation of natural aerosols in the OsloCTM3. Specifically, 418 
the modeled AOD does not capture the slight positive global trend apparent in MODIS-Aqua, with key 419 
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discrepancies over northern hemisphere biomass burning regions and the Southern Ocean. For 420 
individual years, we also find a larger underestimation in AOD compared to AERONET measurements 421 
when switching from CEDS to the lower CEDS21 and ECLv6 emissions, despite better representation 422 
of some key regional trends. This could indicate that too high anthropogenic emission estimates have 423 
masked challenges with for instance dust emissions. Dedicated studies are required to investigate this in 424 
more detail.  425 

Anthropogenic aerosols are changing rapidly, particularly in Asia, with potentially large but 426 
insufficiently quantified implications for regional climate. We have demonstrated that differences 427 
between recent emission inventories can have marked effects on the magnitude and trend of regional 428 
and global aerosol abundances, and in turn on estimates of radiative forcing. Although additional studies 429 
are required to fully quantify the broader implications for aerosol-induced climate and health impacts, 430 
our results facilitate comparisons between existing and upcoming studies, using different emission 431 
inventories, of anthropogenic aerosols and their effects.  432 
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Figures:  672 

 673 

 674 

 675 
Figure 1 Global total anthropogenic emissions of SO2, BC, OC, and NOx in the CEDS21, ECLv6, 676 
CEDS17 inventories, for the period 1990 to the most recent inventory year (2019, 2016 and 2014, 677 
respectively). Dotted lines show emissions from the SSP2-4.5 scenario, linearly interpolated from 2015 678 
to 2019. The maps show the difference in SO2 emissions in 2014, the most recent common year  679 

 680 

 681 

 682 

Figure 2 Absolute difference in regional mean burden of the key anthropogenic aerosol species between 683 
simulations with CEDS21 and CEDS (upper bar) and ECLv6 and CEDS (lower bar). Regions are the 684 
same as in Lund et al. (2019): EAS = East Asia, SAS = South Asia, SAF = Sub-Saharan Africa, NAM = 685 
North America, SAM = South America, NAF = North Africa and the Middle East, EUR = Europe, SEA 686 
= South East Asia, RBU = Russia.  687 

 688 
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 691 

 692 

Figure 3: a) Global mean total AOD simulated with emissions from the CEDS21, ECLv6 and CEDS 693 
inventories. In the case of CEDS, the timeseries is extended from 2014 to 2017 using SSP2-4.5 emissions. 694 
Dashed lines show the linear 2005-2017 trend, defined as statistically significant from no trend when 695 
the linear Pearsons correlation coefficient is significant at the 0.05 level. b) Difference in AOD between 696 
the two inventories and CEDS in 2014, i.e. the last year of historical emissions in CEDS. Also shown is 697 
the interannual variability in MODIS AOD. c) Regional linear trends in AOD over 2005-2017 with the 698 
three different emission inventories.  699 
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 702 

Figure 4: a) RFari and RFaci (left) and RFnet (RFari+RFaci) relative to 1990 under the CEDS21, 703 
ECLv6, and CEDS emission inventories. The vertical bars to the right show the range in RFnet in 2020 704 
and 2030 (relative to 1990) estimated with the SSP1-1.9 and SSP3-7.0 emissions (adapted from Lund et 705 
al. (2019)). b) Difference in RFnet in 2014 relative to 1990 between simulations with ECLv6 and CEDS 706 
emissions. c) The RFnet in 2019 relative to 2014 with CEDS21.  707 

 708 

 709 

 710 

 711 

Figure 5: a) Global, annual mean AOD from MODIS-Aqua and the OsloCTM3 over the 1990-2019 712 
period. Note that data north and south of 70° is excluded here due to the limited MODIS-Aqua coverage. 713 
Dashed lines show linear trend from 2005 to 2017. b-d) Spatially resolved linear trends in observed and 714 
simulated AOD. Hatching indicates where the linear trend is significantly different from zero at the 0.05 715 
level.  716 
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 718 

Figure 6:  Evolution of AOD over South and East Asia, and the Middle East, over the period 2003-719 
2020. All panels show five-year average deviations from the period 2003-2017, except the rightmost 720 
MODIS-Aqua panel which show the three-year average deviation (same baseline). The top row shows 721 
retrievals from MODIS Aqua; the two bottom rows show model calculations with OsloCTM3 based on 722 
the CEDS and CEDS21 emission inventories. 723 
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